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Abstract 

Background People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurologi‑
cal symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction 
may cause chronic inflammation, which may promote hyper‑responsiveness to pathogens and neurodegeneration. 
We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene 
signatures of immune dysregulation in MtD.

Methods We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to 
examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to 
identify commonly dysregulated pathways.

Results Gene sets involved in inflammatory signaling, including type I interferons, interleukin‑1β and antiviral 
responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also 
enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral 
response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction.

Conclusions Through the convergence of our results, we demonstrate translational evidence of systemic peripheral 
inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence link‑
ing mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other 
chronic inflammatory disorders associated with mitochondrial dysfunction.
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Background
In mitochondrial disease (MtD), a bidirectional relation-
ship between MtD and systemic inflammation emerges, 
wherein mitochondrial dysfunction may trigger inflam-
matory cascades, which may then reciprocally contribute 
to the pathogenesis of MtD. Mouse models have linked 
primary mitochondrial dysfunction and systemic inflam-
mation. PolgD257A/D257A mutator mice (hereafter: Polg 
mice), which accumulate mtDNA mutations causing a 
gradual reduction in mitochondrial respiration [1], dis-
play aberrant type I interferon (IFN-I) responses in the 
innate immune axis leading to immunometabolic dys-
function, accelerated aging, and reduced lifespan [2]. The 
Ndufs4−/− mouse, a model of neurodegenerative MtD, 
is also marked by widespread inflammation [3], includ-
ing increases in serum levels of inflammatory cytokines 
(IFN-ɣ and IL-6), inflammatory markers in the skin 
and liver, and numbers of activated microglia [4]. These 
responses may be initiated in part through mitochondrial 
components acting as damage-associated molecular pat-
terns (DAMPs) to activate pattern recognition receptor 
(PRR) signaling, for example mtDNA activation of the 
cGAS/STING antiviral response or the NLRP3 inflam-
masome [5–7], which can trigger the production and 
release of IFN-I and interleukin-1β (IL-1β). In primary 
MtD, mitochondrial dysfunction may cause these path-
ways may be continuously activated, leading to chronic 
inflammation.

Chronic inflammation contributes to numerous dis-
orders, including cardiovascular and metabolic disease, 
cancer, and neurodegeneration [8, 9]. Neurodegenera-
tive diseases, such as many forms of MtD, may present 
a uniquely damaging intersection between inflamma-
tion and mitochondrial dysfunction. Pro-inflammatory 
cytokines, released during systemic inflammation, reach 
the central nervous system (CNS) via multiple pathways 
including the blood brain barrier, the choroid plexus, and 
the vagus nerve [10], and may modulate region-specific 
immune cell activation in the brain [11, 12], leading to 
microglial activation, cytotoxicity, and immune dysregu-
lation [10, 13]. Microglial activation releases cytokines, 
such as TNFɑ, which impair neuronal mitochondria, 
causing both oxidative stress and activating additional 
inflammatory signaling [14]. Recent studies have dem-
onstrated that depletion of leukocytes, including micro-
glia, abrogates neuronal death in the Ndufs4−/− mouse 
[15, 16]. Consequently, primary mitochondrial defects 
may initiate systemic and CNS inflammation, which may 
contribute to neuronal damage observed in patients with 
MtD, which manifests clinically as seizures, developmen-
tal regression, and degeneration.

To date, most studies on systemic inflammation in 
MtD have been performed in model organisms. In this 

study, we aimed to determine if increased inflamma-
tion or inflammatory signaling was also observable in 
human MtD. We performed RNAseq on peripheral 
blood mononuclear cells (PBMCs) in a heterogeneous 
group of patients with MtD and controls, using gene set 
enrichment analysis (GSEA) to identify positively and 
negatively enriched transcriptional signatures in MtD. 
GSEA has been extensively validated as a method to 
identify patterns of gene expression with robust biologi-
cal relevance [17]. We compared those RNA signatures 
with those from transcriptomic studies of mitochon-
drial encephalomyopathy, lactic acidosis, and stroke-
like episode (MELAS) patients and two mouse models 
of mitochondrial dysfunction. Across all four studies we 
observed enrichment of immune activation and inflam-
matory gene sets, particularly in antiviral pathways.

Methods
Participants
All 81 participants were consented and enrolled in an 
IRB approved longitudinal natural history study of viral 
infection and immunity in children with MtD (NIH 
MINI Study, NCT01780168, www. clini caltr ials. gov) and 
evaluated at the NIH Clinical Center. Participant charac-
teristics are shown in Table 1. The diagnosis of MtD was 
made by the referring provider (i.e., neurologist, clinical 
geneticist), and Modified Walker criteria score of “prob-
able” (P) or “definite” (D) was assigned. The mean age of 
the control and MtD cohorts were 14.2 (Std dev = 10.6) 
and 18.4 (Std dev = 16.1) years of age (P = 0.15), respec-
tively. Molecular testing was available for 30 out of 32 
patients (94%) with MtD. The MtD cohort was divided 
into “treated” (n = 22) or “untreated” (n = 9), based on 
concurrent medications at the time of sampling.  For this 
study, treatment includes any one or more of the follow-
ing mitochondria-targeted  compounds: Coenzyme Q10 
(CoQ10), Sodium bicarbonate, EPI-743, B vitamins (B 
complex, or B2, B6, B9, or B12), and L-carnitine, collec-
tively termed as “MitoCocktail”. Importantly, MitoCock-
tail treatment does not exclude the presence of other 
supplements or medications. “Untreated” indicates the 
absence of any known MitoCocktail treatments, or other 
medications or supplements with known direct mito-
chondrial action.

Comparative study selection
Transcriptomic datasets were identified and selected 
from the Gene Expression Omnibus (GEO) (https:// 
www. ncbi. nlm. nih. gov/ geo/) database. GEO was queried 
using search terms for mitochondrial disease, human or 
mouse organism, and excluding iPSC and cell line studies. 
Search terms for mitochondrial disease included “mito*”, 
“mtDNA”, “MELAS”, “MERFF”, “PEO”, “Leigh”, “Alpers”, 

http://www.clinicaltrials.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1 Patient demographic information

Subject ID Age at sample Sex Age category Group Walker score Gene MitoCocktail

MINI_01 22.9 F Adult Control

MINI_02 12 M Ped Control

MINI_03 51.49 F Adult Control

MINI_04 7.1 F Ped Control

MINI_05 10.38 F Ped Control

MINI_06 12.82 F Ped Control

MINI_07 3.37 F Ped Control

MINI_08 5.52 M Ped Control

MINI_09 5.62 F Ped Control

MINI_10 8.44 M Ped Control

MINI_11 14.72 M Ped Control

MINI_12 3.99 F Ped Control

MINI_13 6.12 F Ped Control

MINI_14 6.88 F Ped Case D ATP6 N

MINI_15 14.96 M Ped Case D PMPCB Y

MINI_16 14.55 F Ped Control

MINI_17 10.72 F Ped Case D ATP6 Y

MINI_18 58.38 F Adult Case D TYMP Y

MINI_19 53.68 F Adult Case D mtDNA deletion N

MINI_20 4.58 M Ped Case D MT‑ND3, MT‑ND2 Y

MINI_21 8.71 F Ped Case D MT‑RNR1 Y

MINI_22 20.71 M Adult Case D NUBPL Y

MINI_23 35.2 M Adult Case D ATP6 Y

MINI_24 11.19 M Ped Case D NDUFS2 Y

MINI_25 6.64 F Ped Case D HIBCH Y

MINI_26 34.42 F Adult Case P COXIII; MT‑CYB Y

MINI_27 10.52 M Ped Case P MT‑CYB Y

MINI_28 32.82 F Adult Control

MINI_29 35.81 F Adult Control

MINI_30 32.92 M Adult Control

MINI_31 5.87 F Ped Control

MINI_32 9.23 M Ped Control

MINI_33 12.95 M Ped Control

MINI_34 10.88 M Ped Control

MINI_35 4.99 M Ped Control

MINI_36 3.43 M Ped Control

MINI_37 29.18 F Adult Case P MT‑ND4 Y

MINI_38 13.62 F Ped Control

MINI_39 16.27 M Ped Control

MINI_40 15.21 M Ped Control

MINI_41 4.76 F Ped Case D NUBPL N

MINI_42 8.38 M Ped Case P WARS2, RRM2B Y

MINI_43 11.91 M Ped Case P MT‑RNR2; MT‑ND5 Y

MINI_44 2.51 F Ped Case P unknown Y

MINI_45 38.39 F Adult Case D MT‑TL1; MT‑TS1 Y

MINI_46 7.97 F Ped Case D MT‑TL1; MT‑TS1 Y

MINI_47 11.19 M Ped Case P TK2; COX10; SCO1 N

MINI_48 7.07 M Ped Case D SDHA N

MINI_49 14.94 M Ped Case P MGME1 Y
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“Barth”, “CPEO”, “KSS”, “LHON”, “MIRAS”, “MNGIE”, 
“NARP”, “Polg”, “SANDO”, “SCAD”, and “TK2D”.

Transcriptomic analysis
PBMC were isolated from 5 mL whole blood using Leu-
coSep tubes (Greiner Bio-one) and Ficoll-Paque Plus (GE 
Healthcare) for density gradient centrifugation, before 
lysis in TRIzol (Thermo Fisher, Waltham, MA). For RNA 
extraction samples were batched according to their age, 
gender and case/control status, and two reference sam-
ples were simultaneously processed with each batch. 
Total RNA was isolated and purified with miRNeasy 
kit (Qiagen, Hilden, Germany), with RNA quality and 
quantity estimated using Nanodrop (Thermo Scientific, 
Wilmington, DE) and Agilent 2100 Bioanalyzer (Agilent 

Technologies, Palo Alto, CA). Stranded cDNA sequenc-
ing libraries were generated with TruSeq Stranded 
mRNA Library Prep Kit (Illumina, San Diego, CA) fol-
lowing the manufacturer’s instructions. Briefly, 500  ng 
of total RNA was used for mRNA selection. After the 
reverse transcription to 1st strand cDNA, strand info was 
reserved with dUTPs during 2nd strand synthesis. The 
dsDNA fragments then had the addition of a single ’A’ 
base and subsequent ligation of the adapter. The products 
were then purified and enriched with PCR to create the 
final cDNA library. The library was qualified with Agi-
lent Bioanalyzer and quantified with Qubit 2.0 fluorom-
eter. The cluster generation and paired-end (2 × 75  bp) 
sequencing was run on Illumina HiSeq 3000 at NHLBI 
Sequencing Core. All 81 barcoded samples were pooled 

Table 1 (continued)

Subject ID Age at sample Sex Age category Group Walker score Gene MitoCocktail

MINI_50 14.5 F Ped Case P MT‑ND4; MT‑TV Y

MINI_51 6.75 M Ped Case P NDUFA9; NDUFS2 N

MINI_52 21.85 F Adult Case D MFN2; MT‑ND6 N

MINI_53 47.26 F Adult Case D MFN2 N

MINI_54 12.04 F Ped Case P MT‑ND1; MT‑ND5 Y

MINI_55 51.62 M Adult Case D MT‑ATP6 Y

MINI_56 4.06 M Ped Case D SURF1 Y

MINI_57 4.82 M Ped Case P unknown Y

MINI_58 35.94 F Adult Control

MINI_59 7.05 F Ped Control

MINI_60 3.82 M Ped Control

MINI_61 24.31 F Adult Control

MINI_62 22.61 F Adult Control

MINI_63 15.15 F Ped Control

MINI_64 35.52 M Adult Control

MINI_65 21.97 M Adult Control

MINI_66 21.93 M Adult Control

MINI_67 19.88 M Adult Control

MINI_68 8.5 F Ped Control

MINI_69 3.81 M Ped Control

MINI_70 9.26 M Ped Control

MINI_71 15.45 F Ped Control

MINI_72 10.99 F Ped Control

MINI_73 6.56 F Ped Control

MINI_74 10.79 F Ped Control

MINI_75 4.95 F Ped Control

MINI_76 9.05 M Ped Control

MINI_77 13.86 M Ped Case D  mtDNA deletion N

MINI_78 8.81 F Ped Control

MINI_79 10.66 F Ped Control

MINI_80 4.95 M Ped Control

MINI_81 8.91 M Ped Control
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for one single run, which yielded at least 25 M passed fil-
ter paired reads per sample.

Computational analysis
Sequence alignment, quality control filtering, and count 
matrix generation were performed using STAR [18], 
QoRTs [19], and RSEM [20] on the NIH HPC Bio-
wulf cluster. All subsequent statistical analysis and 
graphical presentations were performed in R (https:// 
cran.r- proje ct. org/). RSEM-corrected transcript counts 
were imported using tximport [21], and differentially 
expressed genes were identified using DESeq2 [22]. Pre-
liminary gene set enrichment analysis (GSEA) was per-
formed using clusterProfiler [23] and visualized using 
GOplot [24]. Subsequent GSEA analysis used the fgsea 
[25] package and blood transcription module (BTM) 
gene sets [26]. Each BTM is a set of genes, which has 
been shown to show coherent expression across many 
biological samples [27, 28]. Gene set variation analysis 
(GSVA) was used to quantify participant level variation 
in signatures and test correlation with participant age 
[29] (Additional file  1: Figure S1C). GEO2R and GEO-
query [30] were used to perform differential expres-
sion analysis from gene expression microarray data in 
LIMMA [31], whereas additional RNAseq data was ana-
lyzed with DESeq2.

Results
Mouse models of mitochondrial dysfunction have 
revealed immune signatures marked by elevated inflam-
mation and interferon responses [2, 3, 7, 15]. To under-
stand whether similar transcriptomic signatures occur in 
people with MtD (Table 1), we performed bulk RNAseq 
on PBMCs. All participants were in their usual state of 
health at the time of collection and did not display any 
symptoms or signs of infection. We examined sample 
variance using a sample distance correlation matrix of 
all control participants and MtD patients (Additional 
file 1: Fig. S1A). Through this analysis, we identified two 
females (one control, one MtD) that segregated from 
other samples, and excluded them from subsequent 
analysis. Using PCA, we observed that our samples do 
not cluster into diagnosis group (Additional file  1: Fig. 
S1B). Differential expression analysis identified differ-
entially expressed genes (DEGs) between control and 
MtD groups (Additional file 2: Table S1). With a thresh-
old of p < 0.1 and log2 fold change (log2FC) of <|0.5|), we 
detected few DEGs including CXCL2 (Fig. 1A). By rank-
ing the top 50 DEGs by t statistic, we found that the dif-
ferences in relative expression between these groups was 
able to improve clustering of control and MtD groups 
(Additional file 1: Fig. S1C).

To identify patterns of differential gene expression, we 
performed GSEA using Gene Ontology (GO) categories. 
This analysis revealed significant positive and negative 
enrichment of 172 gene sets (adjusted p < 0.05) (Addi-
tional file 3: Table S2). In the six most significant positive 
and negatively enriched categories, we found decreased 
expression of genes in ribosomal, mitochondrial, B cell 
and natural killer (NK cell) categories, and increased 
expression of genes related to stimulus response, ion 
channel and G protein-coupled receptor (GPCR) acti-
vation, pattern recognition receptors (PRR), and 
interleukin-1β (IL-1β) production (Fig.  1B). Positively 
enriched gene sets included many involved in immune 
activation and signaling, including IL-1 and IL-1β pro-
duction (n = 6), PRR and Toll-like receptor (TLR) bind-
ing (n = 2), IFN-β production (n = 2) and viral response 
regulation (n = 2). Negatively enriched gene sets included 
mitochondrial proteins and complexes (n = 28), ribo-
somes and translation (n = 30), natural killer (NK) cell 
(n = 9), B cell (n = 3), and major histocompatibility com-
plex (MHC) activity (n = 8) (Fig. 1C).

As these results suggested immune and translational 
dysregulation in our MtD patients, we performed 
GSEA using blood transcriptional modules (BTMs) to 
identify targeted pathway enrichment [26]. We identi-
fied 62 significant gene sets (Additional file 4: Table S3). 
Examining the consensus pathways from these mod-
ules, we observed a positive enrichment in monocyte, 
TLR, IFN, and immune activation clusters, and negative 
enrichment in mitochondria, transcription and transla-
tion, and NK and T cell clusters (Fig. 2). We also found 
positive enrichment of inflammatory response, type I 
IFN response, and innate antiviral response modules, 
and negative enrichment of plasma cell/immunoglob-
ulins and B cell modules trending toward significance 
(p ≤ 0.076).

We compared our findings against three other stud-
ies: whole blood from MELAS patients [32], bone mar-
row-derived macrophages (BMDMs) from Polg mutator 
mice [2], and mouse embryonic fibroblasts from Tfam± 
mice [7]. We performed BTM GSEA on these sam-
ple sets and compared the enrichment of the previ-
ously identified MtD-significant modules (Fig.  3A). 
Examining mitochondrial clusters confirms previously 
observed trends—MELAS subjects and Polg mice have 
a positive enrichment, while MtD patients and Tfam± 
MEFs have a negative enrichment. We discovered 
key overlaps between MtD patients and the previous 
MELAS study, including negative enrichment in NK 
cell and T cell modules. Positive enrichment of mono-
cyte, dendritic cells, and neutrophils are unique to 

https://cran.r-project.org/
https://cran.r-project.org/
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MtD patients, though immune and inflammatory clus-
ter enrichment is shared by MtD and MELAS patients. 
While these modules were not significant in MELAS 

patients, related viral sensing and IRF2 targets clusters 
were (Additional file  4: Table  S3). Putative PAX3 tar-
get gene sets were positively enriched across all four 
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datasets. We examined the genes that compose antivi-
ral and RIG-I like receptor (RLR) (IFN-related), IRF2 
targets, and putative PAX3 target modules (Fig. 3B). In 
IFN gene sets, we observed increased expression of core 
cluster genes PML, RARA, IFIT1, OAS3, IFIH1, DHX58, 
IRF7, and TRIM25 in all four datasets. In IRF2 targets, 
which were significantly enriched in MELAS subjects, 
Polg mice, and Tfam± MEFs, USP18, TAP1, BST2, 
IFI35 were consistently increased. Finally, in putative 
PAX3 targets, NR4A1, GEM, ATF3, and DUSP1 were 
increased in all four datasets.

To find explainable sources of variance within our data-
set, we considered the sex and age of our participants, 
as PCA plots suggested that a proportion of variance 
could be explained by sex (Additional file 1: Fig. S1B). We 
assessed the contribution of age by performing gene set 
variation analysis (GSVA) by evaluating a subset of BTMs 
across our sample population against age (Additional 
file  1: Fig. S2). We did not observe a significant trend 
between age and diagnosis group. We divided our sam-
ples based on sex and re-performed differential expres-
sion analysis. In male samples, we continued to observe 
poor within-diagnosis sample correlation (Additional 
file  1: Fig. S3A) and observed that a significant propor-
tion of variance remained unexplained (Additional file 1: 
Fig. S3B). We observed similar trends in female sam-
ples (Additional file  1: Fig. S3C and S3D). In males, we 
observed that only four DEGs crossed a log2FC >|0.5| 
and p < 0.1 (Additional file  1: Fig. S4A and Additional 
file 2: Table S1). Nonetheless, two downregulated genes, 
FCRL6 and KLRC4-KLRK1, are linked to cytotoxic T 
and/or NK cells. Ranking DEGs by t-statistic and exam-
ining the relative expression of the top 25 genes improved 
clustering between male control and MtD (Additional 
file  1: Fig. S4B). In females, no genes were significantly 
differentially expressed (Additional file  1: Fig. S4C and 
Additional file  2: Table  S1), but we observed within-
diagnosis group clustering when examining the t-statistic 
ranked top 25 DEGs (Additional file 1: Fig. S4D). Rank-
ing by t-statistic and splitting genes into “upregulated” 
and “downregulated” categories, we examined potential 
intersections of control and MtD differential gene expres-
sion in the full dataset, males, and females. Using the top 
500 genes in each category, both upregulated (Additional 
file 1: Fig. S5A) and downregulated (Additional file 1: Fig. 
S5B) intersections demonstrated a majority of uniquely 
identified genes in the full, male, and female datasets, 
but with larger intersections between the full and male 
datasets, and the full and female datasets. At the intersec-
tion of all three sets, we found 26 upregulated genes and 
27 downregulated genes. The upregulated genes include 
TMEM106A, TRIM14, and LPAR1, which are associated 
with positive regulation of NFκB signaling. In contrast, 

the downregulated genes include RPL4P4, RPS7P1, 
RPL13AP5, RPS15P4, RPL7P9, and RPL7AP30, which 
are processed ribosomal pseudogenes. In aggregate, 
the function of these genes is unclear, however, as new 
functions have recently been described for several pseu-
dogenes [33], it is possible that these genes are related 
to dysregulated ribosomal or RNA processing patterns 
observed in the GSEA (Additional file 3: Table S2).

In males, GSEA of GO terms identified 87 significant 
gene sets, including negative enrichment of gene sets 
relating to ribosomes (n = 12), mitochondria (n = 23), 
MHCs (n = 2), NK cells (n = 9) and T cells (n = 3) (Fig. 4A 
and Additional file  3: Table  S2). In females, significant 
GO GSEA results (n = 78) revealed similar negatively 
enriched gene sets, including ribosomes (n = 21), mito-
chondria (n = 3), and B cells (n = 5), but also positively 
enriched gene sets including IL-1β production (n = 6) 
and endothelial morphogenesis (n = 2) (Fig. 4B and Addi-
tional file 3: Table S2). Based on these disparate results, 
we compared male and female GSEA using BTMs. While 
there were many overlapping significantly enriched cat-
egories (Additional file 4: Table S3), we observed intrigu-
ing differences between the two groups (Fig.  4C). TLR 
and inflammatory signaling and monocyte gene sets are 
more positively enriched in female MtD samples than 
males, and IRF2 targets are significantly enriched in 
females. In contrast, several B cell gene sets are signifi-
cantly negatively enriched in females, whereas these sets 
are either nonsignificant or positively enriched in males. 
Finally, we observed that while NK and T cell gene sets 
are negatively enriched in males and females, these sets 
were more significant in males.

We further grouped MtD patients into “treated” 
(n = 22) and “untreated” (n = 9) conditions, on the basis 
of receiving any class of mitochondria-related treat-
ment, or "MitoCocktail" (see Methods for treatment 
details). While differential gene expression analysis again 
did not detect any single significant genes (Additional 
file 2: Table S1), GSEA of GO terms detected significant 
enrichment of 151 categories (Fig.  5A and Additional 
file  3: Table  S2). MtD patients treated with MitoCock-
tail had significant positive enrichment of mitochondrial 
gene sets, including oxidative phosphorylation, mito-
chondrial translation, and purine metabolism (n = 43), 
ribonucleoproteins and rRNA (n = 16), RNA and RNA 
splicing (n = 12), cell division (n = 8), and protein fold-
ing and localization (n = 14) related gene sets. We also 
observed positive enrichment of defense response and 
viral process (n = 4), T cells (n = 3) and response to IL-7 
(n = 2) gene sets. Negatively enriched categories included 
chemokine and cytokine (n = 3), receptor activity (n = 6) 
and response to IL-1, negative regulation of NFκB, and 
MHC protein (n = 1, respectively) gene sets. Pursuing 
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these findings in GSEA of BTM terms (Fig. 5B and Addi-
tional file 4: Table S3), we found that treated patients had 
a majority positive enrichment of NK and T cell gene 
sets, and positive enrichment of protein folding genes. In 
contrast, chemokine, cytosolic DNA sensing, and PAX3 
target gene sets were negatively enriched.

Discussion
Our study is among the first to examine the transcrip-
tomic profile of PBMCs from a cohort of MtD patients. 
We used GSEA to identify key pathway perturbations, 
and, using both GO terms and validated BTMs, we 
observed consistent set enrichments. We observed posi-
tive enrichment of IL-1β, IFN, and TLR/PRR GO terms, 
and monocyte, TLR, and IFN signaling BTMs, suggest-
ing elevated basal levels of inflammation in MtD patients. 
Conversely, we observed negative enrichment of riboso-
mal proteins, cell killing, and mitochondrial GO terms, 
and T cell, NK cell, B cell, and transcription and trans-
lation BTMs, suggesting suppression of immune system 
activity coupled with deficits in translation. These data 
are a valuable resource to inform future study of the 
mechanisms of peripheral inflammation in patients with 
MtD.

While we observed few significant DEGs, our sample 
population is highly heterogenous. We included male 
and female, adult and pediatric patients and controls, 
and patients with multiple MtD disease-causing variants, 
including both mtDNA and nDNA mutations. Few sig-
nificant DEGs were detected in the MELAS study, despite 
restricting to adult patients with the same m.A3243G 
variant [32]. Further, this distinction in study populations 
likely underlies the oppositional enrichment between 
MtD and MELAS groups in mitochondrial gene sets. The 
MELAS study found a positive enrichment of mitochon-
drial genes, and our confirmation of this finding with our 
BTM GSEA approach is an important validation of our 
technique. The significant negative enrichment of mito-
chondrial genes among our MtD patients may reflect the 
differing genetic origins of MtD.

Across all four datasets, we observed a positive enrich-
ment of antiviral IFN or viral sensing signaling modules, 
supporting previous findings. In Tfam± MEFs, a path-
way was identified by which mitochondrial stress pro-
motes the release of mtDNA into the cytosol, activating 
the cGAS-STING-IRF3 antiviral response [7]. In Polg 
BMDMs, type I IFN signaling genes are basally elevated 
[2]. Together, these demonstrated increased IFN signal-
ing and inflammatory signaling in multiple mouse mod-
els of mitochondrial dysfunction. We found significant 
enrichment of similar pathways in our MtD patients and 

in MELAS, suggesting basal IFN and antiviral pathway 
hyperactivation may be common mechanisms in MtD. 
We identified significant enrichment of an “innate activa-
tion by cytosolic DNA sensing” module in Polg and Tfam 
datasets, but this module was not enriched in either MtD 
or MELAS. Consequently, while we confirm enrichment 
of IFN and inflammatory pathways in human MtD, we 
emphasize that additional research will be needed to 
characterize underlying mechanisms.

Our dataset allowed us to perform a preliminary analy-
sis of male and female patients with MtD. While sex did 
not drive all variance observed, we found interesting dif-
ferences between males and females. In males, T cell and 
NK cell GO terms were significantly negatively enriched. 
In females, B cell and immunoglobulin GO terms were 
negatively enriched, while IL-1β and ficolin-1 gene sets 
were positively enriched. BTM terms furthered these 
findings, demonstrating oppositional enrichment of B 
cell gene sets between males and females, stronger nega-
tive enrichment of T cell and NK cell sets in males, and 
stronger positive enrichment of monocyte and TLR sets 
in females. This intriguing segregation of enriched path-
ways suggests potential sex-specific manifestations of 
immune dysfunction in MtD. Further, we compared MtD 
patients treated with MitoCocktail against untreated 
MtD patients. This comparison suggested that patients 
receiving treatment have positive enrichment of mito-
chondrial, ribosomal, and RNA processing gene sets, and 
of NK and T cell gene sets. In contrast, we observed neg-
ative enrichment of chemokine, cytosolic DNA sensing, 
and PAX3 target gene sets. These results are also prelimi-
nary, particularly as our treated and untreated groups are 
unbalanced. However, these enrichments further support 
the link between mitochondrial dysfunction and immune 
dysregulation, as they suggest that treatments supporting 
mitochondrial function affect immune related gene set 
expression.

Importantly, there are key limitations to this study. Our 
findings are based on GO and GSEA methods, which 
are valuable approaches to identifying gene networks 
and patterns of subtle changes in gene expression in het-
erogeneous sample populations. However, these find-
ings are limited to gene expression in uninfected MtD 
patients and controls, and it will nonetheless be essential 
for future studies to validate these findings with other 
methods. For example, gene expression changes or per-
turbations in cytokine levels in the presence or absence 
of infection may yield more information about a poten-
tial mitochondrial dysfunction-induced hyperinflam-
matory response, as previously suggested by animal 
models. Further, though our study suggests potential 
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cell-type specific changes in gene expression in MtD, 
single cell analysis of PBMC cell types or other tissue-
specific immune cells may provide more insight into the 
mechanisms underlying these observations. We have 
also presented preliminary data suggesting that there 
are differences in gene expression patterns in male and 
female MtD, as well as in treated and untreated MtD. We 
would like to stress that these findings especially should 
be validated with other methodologies, in larger patient 
cohorts, and in other models of MtD. Finally, clinical 
observations have suggested the coincidence of infec-
tion and exacerbation of MtD symptoms. Further animal 
model and clinical studies directed at this relationship 
may be necessary to further understand MtD progres-
sion, and to characterize the role of immune dysfunction.

Conclusions
Using multiple GSEA approaches, we demonstrate that 
MtD patients have positively enriched IFN, inflamma-
tory signaling, and monocyte gene sets, and negatively 
enriched NK cell, T cell, and ribosomal gene sets. Our 
approach confirms the enrichment of type I IFN signal-
ing in two mouse models of mitochondrial dysfunction 
and detects a previously unreported enrichment of viral 
sensing genes in a study of MELAS patients. MtD and 
mitochondrial dysfunction may induce basal peripheral 
inflammation, which likely contributes to the suscepti-
bility to elevated inflammatory responses and sepsis in 
people with MtD. Further, peripheral inflammation exac-
erbates neuroinflammation and neurodegeneration in 
animal models [34, 35]. This may point to an important 
mechanism underlying the acceleration of neurodegen-
eration following infection in MtD, and the exacerbation 
of neurodegeneration in disorders with mitochondrial 
dysfunction.
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